If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-32x+16=0
a = 8; b = -32; c = +16;
Δ = b2-4ac
Δ = -322-4·8·16
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-16\sqrt{2}}{2*8}=\frac{32-16\sqrt{2}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+16\sqrt{2}}{2*8}=\frac{32+16\sqrt{2}}{16} $
| 3a+4a+2a=0 | | b-68=36 | | 64+90+x+8=180 | | 66+50+x=180 | | 54+x+115=180 | | 61+x+84=180 | | x/12-6=-1 | | x2-18+93=- | | 6x+6=13+4x | | 32.83=15x+1.93 | | 4m+6+5m+3+90=180 | | (x^2-x-2)/(x-6)=0 | | 5m-7=3(2m+1) | | 52+x+81=180 | | 9e-8-8e-2=180 | | (2x-9)/(x-4)=0 | | 2x-9/x-4=0 | | 1.2=1.08^t | | 11y-6y-7=61.80 | | r+5+2r+4=180 | | 10y-5y-9=59.25 | | 1.342z=16.104 | | 1/6y-6=-19 | | Y=8(1/2)^x | | -12=4(2q+7)-3q | | z-8+4=-8 | | 6v-34=4(v-5) | | -11-6b+3=16+2b | | 2k^2-7+6=0 | | 3x^2-2+149=0 | | -14.63=-4.52+-3q | | 5(8-2w)=4-4w |